

LA-UR-18-29734

Approved for public release; distribution is unlimited.

Title: Advances in machine learned potentials for molecular dynamics

simulation

Author(s): Barros, Kipton Marcos

Intended for: Release slides online

Issued: 2018-10-13

Advances in machine learned potentials for molecular dynamics simulation

Kipton Barros Los Alamos National Lab. Physics Next, Machine Learning, Oct 9, 2018, Riverhead, NY

LANL:

Nick Lubbers Justin Smith Andrew Sifain Ben Nebgen Sergei Tretiak Oles Isayev (UNC) Adrian Roitberg (UF)

Molecular dynamics articles

Drug design
Biophysics
Materials

Born Oppenheimer MD

→ separation of scales

Calculate energy/forces for fixed nuclei positions

$$\mathbf{r}_1...\mathbf{r}_N\mapsto E[\mathbf{r}]$$
 Schrödinger Eq. \approx {Hartree Fock, DFT, Coupled Cluster, ...}

Integrate nuclei dynamics

$$\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i E[\mathbf{r}]/m_i$$

Not treated:

Quantum mechanics of nuclei (e.g. hydrogen)

Non-equilibrium dynamics of electrons

- von Neumann eq. for density matrix
- non-adiabatic excited state MD

Classical potential / force field

Schrödinger Equation

Pros:

Fast

Cons:

Not very transferable,

Non-reactive

Laborious parameterization

Pros: Accurate, transferable

Cons: Computationally gemanding

Machine learning to emulate Schrödinger eq.

QM9 - 130k organic molecules

Lubbers et al., https://arxiv.org/abs/1710.00017

Levels of quantum chemistry

Physics informed machine learning

Symmetries:

Translation Time reversal

Rotation

Permutation

Physical principles:

Locality + Coulomb interactions

Hierarchicality (e.g. many-body expansion)

Do not constrain to partially correct physics?

Transplant techniques

Deep learning philosophy:

- don't hand design features
- use large training dataset

Neural Net

$$z_a^{n+1} = f_{\text{nonlin}}(\sum_b W_{ab} z_b^n + b_a)$$

Conv Net

$$z^{n+1}(x) = f_{\text{nonlin}}[(W * z^n)(x) + b(x)]$$

Molecular generalization

$$z^{n+1}(x) = f_{\mathbf{nonlin}}[\dots z^n \dots]$$

See also: DTNN, MPNN, SchNet, ...

https://ai.googleblog.com/2017/04/predicting-properties-of-molecules-with.html

HIP-NN

Lubbers et al., "Hierarchical modeling of molecular energies using a deep neural network" https://arxiv.org/abs/1710.00017

Symmetries of ML potential

Translation,

Rotation:

Atomic positions represented entirely with *pairwise distances*

Time reversal:

Forces are generated as **exact** derivative $f = -\nabla \hat{E}$.

Physical principles

Spatial locality:

Energy decomposed locally,

$$\hat{E} = \sum_{i} \hat{E}_{i}$$

Hierarchicality:

Energy decomposed hierarchically $\hat{E}_i = \sum_{\ell} \hat{E}_i^{\ell}$.

Training to energies and forces

Energy $\hat{E}[\mathbf{r}, w]$

Backprop 1, forces $\nabla_{\mathbf{r}} \hat{E}$

Backprop 2, weight updates: $\nabla_{w} \mathscr{L}$

Active learning

Computer should help us design good datasets!

Active learning vs random sampling

Dataset sizes

ANI-1	ANI-1x
22M	5M

Errors

JS Smith, et al.; *The Journal of Chemical Physics*, (**2018**), 148 (24), 241733

Transfer learning

Combine lots of DFT data with some high accuracy CCSD data

- Subsample 10% of ANI-1x training data (0.5M of 5M)
- Recompute CCSD(T)/ CBS level
- 340k parameters fixed, re-train 60k
- 10⁷ faster than DFT

Hydrocarbon reaction energy benchmark

Reference data: Peverati, R.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. Lett. 2011, 2 (16), 1991-1997.

Sellers, B. D.; James, N. C.; Gobbi, A. A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments. *J. Chem. Inf. Model.* **2017**, *57* (6), 1265–1275.

Density of bulk water

NPT conditions: 295K; 1Bar 267 waters

CCSD(T)*/CBS energy only trained (295K;1bar)

J. S. Smith, in preparation

Inferring local charges to produce dipoles

Sifain et al., "Discovering a Transferable Charge Assignment Model Using Machine Learning" [ChemRxiv:6638981]

Inferred charges generalize to quadrupoles

IR Spectra

Conclusions

Machine learning to emulate quantum chemistry works great!

Future directions?

Accounting for electron dynamics?

Joint-training to more information from wave-function?

Use ML to predict effective quantum Hamiltonians?

Better transfer learning? Can we incorporate data from experiment (e.g. phase diagrams)?

Kipton Barros

kbarros@gmail.com

cnls.lanl.gov/~kbarros

Nicholas Lubbers

Lubbers et al., "Hierarchical modeling of molecular energies using a deep neural network" [arXiv:1710.00017] Smith et al., "Less is more: sampling chemical space with active learning" [arXiv:1801.09319]

Smith et al., "Outsmarting Quantum Chemistry Through Transfer Learning" [ChemRxiv:6744440]

Sifain et al., "Discovering a Transferable Charge Assignment Model Using Machine Learning" [ChemRxiv:6638981]

Entire HIP-NN

$$E \approx \hat{E} = \sum_{i=1}^{N_{\text{atom}}} \hat{E}_i.$$

$$\hat{E}_i = \sum_{\ell} w_a^{\ell} z_{i,a}^{\ell}$$

Locality/ $E \approx \hat{E} = \sum_{i=1}^{N_{\mathrm{atom}}} \hat{E}_i.$ $\hat{E}_i = \sum_{a} w_a^{\ell} z_{i,a}^{\ell}$ Hierarchicality

 $f(x) = \log(1 + e^x).$

Activation fn.

$$\tilde{z}_{i,a}^{\ell+1} \underset{\text{inter.}}{=} f\left(\sum_{j,b} v_{ab}^{\ell}(r_{ij}) z_{j,b}^{\ell} + \sum_{b} W_{ab}^{\ell} z_{i,b}^{\ell} + B_{a}^{\ell}\right)$$
 Interactions

$$z_{i,a}^{\ell+1} = \sum_{b} \left(\tilde{W}_{ab}^{\ell} \tilde{z}_{b}^{\ell+1} + \tilde{M}_{ab}^{\ell} z_{i,b}^{\ell} \right) + \tilde{B}_{a}^{\ell},$$

Res-net

Basis expansion

$$s_{\nu}^{\ell}(r) = \exp\left[-\frac{\left(r^{-1} - \mu_{\nu,\ell}^{-1}\right)^2}{2\sigma_{\nu,\ell}^{-2}}\right] \varphi_{\mathrm{cut}}(r).$$

Sensitivity functions

$$\mathscr{L} = \sum_{i=1}^{n} \left[c_1 (E - \hat{E})^2 + c_2 (\nabla E - \nabla \hat{E})^2 \right] \quad \text{Loss fn.}$$